Shortest binary number in range

Ruby, 138 132 bytes

->x,y{d,*a=->{a.map.with_index{|n,i|n/BigDecimal.new(2)**(i+1)}.inject(:+)||0};[a+=[1],a[-1]=d[]>=y ?0:1]while d[]<x;a}

13 bytes added for the -rbigdecimal flag. Expects input as two BigDecimals.

Sample run:

irb(main):029:0> f=->x,y{d,*a=->{a.map.with_index{|n,i|n/BigDecimal.new(2)**(i+1)}.inject(:+)||0};[a+=[1],a[-1]=d[]>=y ?0:1]while d[]<x;a}
=> #<Proc:0x00000001053a10@(irb):29 (lambda)>
irb(main):030:0> f[BigDecimal.new('0.98983459823945792125172638374187268447126843298479182647'),BigDecimal.new('0.98983459823945792125172638374187268447126843298479182648')]
=> [1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1]

Explanation:

->x,y{
d,*a=   # sets d to the following, and a to [] with fancy splat operator
->{     # lambda...
 a.map.with_index{|n,i|       # map over a with indices
  n/BigDecimal.new(2)**(i+1)  # this will return:
                              #  - 0 [ /2**(i+1) ] if n is 0
                              #  - 1   /2**(i+1)   if n is 1
 }.inject(:+)                 # sum
 ||0                          # inject returns nil on empty array; replace with 0
};      # this lambda turns `[0, 1, 1]' into `BigDecimal(0b0.011)'
[       # `[...]while x' is a fancy/golfy way to say `while x;...;end'
 a+=[1],            # add a digit 1 to the array
 a[-1]=d[]>=y ?0:1  # replace it with 0 if we exceeded upper bound
]while d[]<x;       # do this while(below the lower bound)
a       # return the array of digits
}

Mathematica, 72 bytes

IntegerDigits[#2[[-1,-1]],2,Log2@#]&@@Reap[1//.a_/;Sow@⌈a#⌉>=a#2:>2a]&

Explanation

The method is to find the smallest multiplier of form 2^n that enlarges the gap between two input numbers so that it contains an integer.

For example, 16*{0.4,0.5} = {6.4,8.} contains 7, so the answer is 7/16.

Test case

%[0.4,0.5]
(* {0,1,1,1} *)

CJam, 46

q'.-_,:M;S/{3a.+M'0e]~GM#*AM(#/(2b}/_@.=0#)<2>

Try it online

Explanation:

The general idea is: multiply both numbers by 10some big enough exponent to get integers, multiply again by 2another big enough exponent to "make room" for binary digits in integer form, integer-divide back by 10the first exponent, decrement the numbers (to get to the "x < b ≤ y" case) and convert the results to base 2. Find the first different digit (it will be 0 in the first number and 1 in the second number), and print all the digits from the second number up to and including that one.

Before starting with the multiplications, I'm adding 3 to the integer parts in order to ensure that the results have the same number of binary digits (with no leading zeros) after decrementing. At the end, I am skipping the first 2 binary digits to compensate.

q          read the input as a string
'.-        remove the dots
_,         duplicate and get the string length
:M;        store in M and pop; M-1 will be the first exponent
S/         split by space
{…}/       for each number (in string form)
  3a.+     add 3 to the first digit (vectorized-add [3] to the string)
  M'0e]    pad to the right with '0's up to length M
            this is like multiplying the decimal number with 10^(M-1)
            but done as a string operation
  ~        evaluate the result as an integer
  GM#*     multiply by 16^M (G=16) = 2^(4*M) -- 4*M is the second exponent
  AM(#/    divide by 10^(M-1) (A=10)
  (2b      decrement and convert to base 2 (array of digits)
_          duplicate the 2nd array
@          bring the first array to the top
.=         vectorized-compare the arrays (digit by digit)
0#         find the position of the first 0 (meaning digits are not equal)
)<         increment and slice the other copy of the 2nd array before that position
2>         discard the first 2 digits