Python Multiprocessing - apply class method to a list of objects

One way to do what you want is to have your computing class (simulation in your case) be a subclass of Process. When initialized properly, instances of this class will run in separate processes and you can set off a group of them from a list just like you wanted.

Here's an example, building on what you wrote above:

import multiprocessing
import os
import random

class simulation(multiprocessing.Process):
    def __init__(self, name):
        # must call this before anything else

        # then any other initialization = name
        self.number = 0.0
        sys.stdout.write('[%s] created: %f\n' % (, self.number))

    def run(self):
        sys.stdout.write('[%s] running ...  process id: %s\n' 
                         % (, os.getpid()))

        self.number = random.uniform(0.0, 10.0)
        sys.stdout.write('[%s] completed: %f\n' % (, self.number))

Then just make a list of objects and start each one with a loop:

sim_list = []

for sim in sim_list:

When you run this you should see each object run in its own process. Don't forget to call Process.__init__(self) as the very first thing in your class initialization, before anything else.

Obviously I've not included any interprocess communication in this example; you'll have to add that if your situation requires it (it wasn't clear from your question whether you needed it or not).

This approach works well for me, and I'm not aware of any drawbacks. If anyone knows of hidden dangers which I've overlooked, please let me know.

I hope this helps.

For those who will be working with large data sets, an iterable would be your solution here:

import multiprocessing as mp
pool = mp.Pool(mp.cpu_count())
pool.imap(sim.start, sim_list)