Mock functions in Go

Personally, I don't use gomock (or any mocking framework for that matter; mocking in Go is very easy without it). I would either pass a dependency to the downloader() function as a parameter, or I would make downloader() a method on a type, and the type can hold the get_page dependency:

Method 1: Pass get_page() as a parameter of downloader()

type PageGetter func(url string) string

func downloader(pageGetterFunc PageGetter) {
    // ...
    content := pageGetterFunc(BASE_URL)
    // ...
}

Main:

func get_page(url string) string { /* ... */ }

func main() {
    downloader(get_page)
}

Test:

func mock_get_page(url string) string {
    // mock your 'get_page()' function here
}

func TestDownloader(t *testing.T) {
    downloader(mock_get_page)
}

Method2: Make download() a method of a type Downloader:

If you don't want to pass the dependency as a parameter, you could also make get_page() a member of a type, and make download() a method of that type, which can then use get_page:

type PageGetter func(url string) string

type Downloader struct {
    get_page PageGetter
}

func NewDownloader(pg PageGetter) *Downloader {
    return &Downloader{get_page: pg}
}

func (d *Downloader) download() {
    //...
    content := d.get_page(BASE_URL)
    //...
}

Main:

func get_page(url string) string { /* ... */ }

func main() {
    d := NewDownloader(get_page)
    d.download()
}

Test:

func mock_get_page(url string) string {
    // mock your 'get_page()' function here
}

func TestDownloader() {
    d := NewDownloader(mock_get_page)
    d.download()
}

If you change your function definition to use a variable instead:

var get_page = func(url string) string {
    ...
}

You can override it in your tests:

func TestDownloader(t *testing.T) {
    get_page = func(url string) string {
        if url != "expected" {
            t.Fatal("good message")
        }
        return "something"
    }
    downloader()
}

Careful though, your other tests might fail if they test the functionality of the function you override!

The Go authors use this pattern in the Go standard library to insert test hooks into code to make things easier to test:

  • https://golang.org/src/net/hook.go
  • https://golang.org/src/net/dial.go#L248
  • https://golang.org/src/net/dial_test.go#L701

I'm using a slightly different approach where public struct methods implement interfaces but their logic is limited to just wrapping private (unexported) functions which take those interfaces as parameters. This gives you the granularity you would need to mock virtually any dependency and yet have a clean API to use from outside your test suite.

To understand this it is imperative to understand that you have access to the unexported methods in your test case (i.e. from within your _test.go files) so you test those instead of testing the exported ones which have no logic inside beside wrapping.

To summarize: test the unexported functions instead of testing the exported ones!

Let's make an example. Say that we have a Slack API struct which has two methods:

  • the SendMessage method which sends an HTTP request to a Slack webhook
  • the SendDataSynchronously method which given a slice of strings iterates over them and calls SendMessage for every iteration

So in order to test SendDataSynchronously without making an HTTP request each time we would have to mock SendMessage, right?

package main

import (
    "fmt"
)

// URI interface
type URI interface {
    GetURL() string
}

// MessageSender interface
type MessageSender interface {
    SendMessage(message string) error
}

// This one is the "object" that our users will call to use this package functionalities
type API struct {
    baseURL  string
    endpoint string
}

// Here we make API implement implicitly the URI interface
func (api *API) GetURL() string {
    return api.baseURL + api.endpoint
}

// Here we make API implement implicitly the MessageSender interface
// Again we're just WRAPPING the sendMessage function here, nothing fancy 
func (api *API) SendMessage(message string) error {
    return sendMessage(api, message)
}

// We want to test this method but it calls SendMessage which makes a real HTTP request!
// Again we're just WRAPPING the sendDataSynchronously function here, nothing fancy
func (api *API) SendDataSynchronously(data []string) error {
    return sendDataSynchronously(api, data)
}

// this would make a real HTTP request
func sendMessage(uri URI, message string) error {
    fmt.Println("This function won't get called because we will mock it")
    return nil
}

// this is the function we want to test :)
func sendDataSynchronously(sender MessageSender, data []string) error {
    for _, text := range data {
        err := sender.SendMessage(text)

        if err != nil {
            return err
        }
    }

    return nil
}

// TEST CASE BELOW

// Here's our mock which just contains some variables that will be filled for running assertions on them later on
type mockedSender struct {
    err      error
    messages []string
}

// We make our mock implement the MessageSender interface so we can test sendDataSynchronously
func (sender *mockedSender) SendMessage(message string) error {
    // let's store all received messages for later assertions
    sender.messages = append(sender.messages, message)

    return sender.err // return error for later assertions
}

func TestSendsAllMessagesSynchronously() {
    mockedMessages := make([]string, 0)
    sender := mockedSender{nil, mockedMessages}

    messagesToSend := []string{"one", "two", "three"}
    err := sendDataSynchronously(&sender, messagesToSend)

    if err == nil {
        fmt.Println("All good here we expect the error to be nil:", err)
    }

    expectedMessages := fmt.Sprintf("%v", messagesToSend)
    actualMessages := fmt.Sprintf("%v", sender.messages)

    if expectedMessages == actualMessages {
        fmt.Println("Actual messages are as expected:", actualMessages)
    }
}

func main() {
    TestSendsAllMessagesSynchronously()
}

What I like about this approach is that by looking at the unexported methods you can clearly see what the dependencies are. At the same time the API that you export is a lot cleaner and with less parameters to pass along since the true dependency here is just the parent receiver which is implementing all those interfaces itself. Yet every function is potentially depending only on one part of it (one, maybe two interfaces) which makes refactors a lot easier. It's nice to see how your code is really coupled just by looking at the functions signatures, I think it makes a powerful tool against smelling code.

To make things easy I put everything into one file to allow you to run the code in the playground here but I suggest you also check out the full example on GitHub, here is the slack.go file and here the slack_test.go.

And here the whole thing.


I would do something like,

Main

var getPage = get_page
func get_page (...

func downloader() {
    dl_slots = make(chan bool, DL_SLOT_AMOUNT) // Init the download slot semaphore
    content := getPage(BASE_URL)
    links_regexp := regexp.MustCompile(LIST_LINK_REGEXP)
    matches := links_regexp.FindAllStringSubmatch(content, -1)
    for _, match := range matches{
        go serie_dl(match[1], match[2])
    }
}

Test

func TestDownloader (t *testing.T) {
    origGetPage := getPage
    getPage = mock_get_page
    defer func() {getPage = origGatePage}()
    // The rest to be written
}

// define mock_get_page and rest of the codes
func mock_get_page (....

And I would avoid _ in golang. Better use camelCase