Why is the determinant of a symplectic matrix 1?

First, taking the determinant of the condition $$ \det AJA^T = \det J \implies \det A^TA = 1 $$ using that $\det J \neq 0$. This immediately implies $$ \det A = \pm 1$$ if $A$ is real valued. The quickest way, if you know it, to show that the determinant is positive is via the Pfaffian of the expression $A J A^T = J$.


Let me first restate your question in a somewhat more abstract way. Let $V$ be a finite dimensional real vector space. A sympletic form is a 2-form $\omega\in \Lambda^2(V^\vee)$ which is non-degenerate in the sense that $\omega(x,y)=0$ for all $y\in V$ implies that $x=0$. $V$ together with such a specified $\omega$ nondegerate 2-form is called a symplectic space. It can be shown that $V$ must be of even dimension, say, $2n$.

A linear operator $T:V\to V$ is said to be a symplectic transformations if $\omega(x,y)=\omega(Tx,Ty)$ for all $x,y\in V$. This is the same as saying $T^*\omega=\omega$. What you want to show is that $T$ is orientation preserving. Now I claim that $\omega^n\neq 0$. This can be shown by choosing a basis $\{a_i,b_j|i,j=1,\ldots,n\}$ such that $\omega(a_i,b_j)=\delta_{ij}$ and $\omega(a_i,a_j)=\omega(b_i,b_j)=0$, for all $i,j=1,\ldots,n $. Then $\omega=\sum_ia_i^\vee\wedge b_i^\vee$, where $\{a_i^\vee,b_j^\vee\}$ is the dual basis. We can compute $\omega^n=n!a_1^\vee\wedge b_1^\vee\wedge\dots\wedge a_n^\vee \wedge b_n^\vee$, which is clearly nonzero.

Now let me digress to say a word about determinants. Let $W$ be an n-dimensional vector space and $f:W\to W$ be linear. Then we have induced maps $f_*:\Lambda^n(W)\to \Lambda^n(W)$. Since $\Lambda^n(W)$ is 1-dimensional, $f_*$ is multiplication by a number. This is just the determinant of $f$. And the dual map $f^*:\Lambda^n(W^\vee)\to \Lambda^n(W^\vee)$ is also multiplication by the determinant of $f$.

Since $T^*(\omega^n)=\omega^n$, we can see from the above argument that $\det(T)=1$. The key point here is that the sympletic form $\omega$ give a canonical orientation of the space, via the top from $\omega^n$.


The determinant is a continuous function, and the set of symplectic matrices with invertible $A_1$ is dense in the set of all symplectic matrices. So if you've proven that it equals 1 for all invertible $A_1$, then it equals 1 for all $A_1$.