Using the fact that $\sqrt{n}$ is an irrational number whenever $n$ is not a perfect square, show $\sqrt{3} + \sqrt{7} + \sqrt{21}$ is irrational.

Suppose $(1+\sqrt3)(1+\sqrt7)=p/q$ for some $p,q\in\Bbb Z^+$. Then we have that $$q(1+\sqrt3)=\frac p{1+\sqrt7}=\frac{p(1-\sqrt7)}{-6}\implies p\sqrt7-6q\sqrt3=p+6q\ne0\tag1$$ This implies that $$p\sqrt7+6q\sqrt3=\frac{(p\sqrt7+6q\sqrt3)(p\sqrt7-6q\sqrt3)}{p\sqrt7-6q\sqrt3}=\frac{7p^2-108q^2}{p+6q}\tag2$$ Adding $(1)$ and $(2)$ together gives $$2p\sqrt7=p+6q+\frac{7p^2-108q^2}{p+6q}\implies\sqrt7\in\Bbb Q$$ which is a contradiction. $\square$


If $(1+\sqrt{3})(1+\sqrt{7})$ is rational, then

$$\displaystyle \frac{12}{(1+\sqrt{3})(1+\sqrt{7})}=\frac{12(1-\sqrt{3})(1-\sqrt{7})}{(-2)(-6)}=1-\sqrt{3}-\sqrt{7}+\sqrt{21}$$ is also rational.

So, $\displaystyle \frac{1}{2}[(1+\sqrt{3})(1+\sqrt{7})+1-\sqrt{3}-\sqrt{7}+\sqrt{21}]-1=\sqrt{21}$ is rational.

This leads to a contradiction.