prove this is a strongly convex function

The key is to use the fact that the $2$-norm comes from an inner product. We have \begin{align*} f(tx+(1-t)y)-t(f(x)-(1-t)f(y)&=mt^2||x||^2+2mt(1-t)\langle x,y\rangle+m(1-t)^2||y||^2\\ & - mt||x||^2-m(1-t)||y||^2\\ &=mt(t-1)||x||^2+m(1-t)(1-t-1)||y||\\ &+2mt(1-t)\langle x,y\rangle\\ &=-mt(1-t)||x||^2+2mt(1-t)\langle x,y\rangle -mt(1-t)||y||^2\\ &=-mt(1-t)(||x||^2-2\langle x,y\rangle+||y||^2)\\ &=-mt(1-t)||x-y||^2\\ &\leq -\frac 12mt(1-t)||x-y||^2 \end{align*} since $mt(1-t)||x-y||^2\geq 0$.