Prove that orthogonal projections in a Hilbert space satisfy $pq=0$ iff $p+q\le I$

  • The assumption $p+q\le 1$ is equivalent to $$ \forall x\in\mathcal{H},\qquad<(p+q)x,x>\le \Vert x\Vert^2$$ or equivalently $$ \forall x\in\mathcal{H},\qquad \Vert p (x)\Vert^2+\Vert q(x)\Vert^2\le \Vert x\Vert^2$$ Applying this to $x=q(y)$ we get $$ \forall y\in\mathcal{H},\qquad \Vert p (q(y))\Vert^2+\Vert q(y)\Vert^2\le \Vert q(y)\Vert^2$$ That is $pq(y)=0$ for all $y\in\mathcal{H}$ This proves the missing direction.
  • For the first direction we need to show that $e=p+q$ is an orthogonal projection which is easy since clearly $e^*=e$ and as you have shown $e^2=e$ because $pq=qp=0$. Now every orthogonal projection $e$ satisfies $e\le 1$. Indeed since for every $x$ the vectors $e(x)$ and $(1-e)(x)$ are orthogonal we have $$\Vert x\Vert^2= \Vert e(x)\Vert^2+\Vert (1-e)(x)\Vert^2\ge \Vert e(x)\Vert^2$$ that is $<e(x),x>\,=\,<e(x),e(x)>\le <x,x>$ for every $x\in\mathcal{H}$.