Prove $\sin x$ is uniformly continuous on $\mathbb R$

Let $\epsilon>0$ and $x,y\in \mathbb{R}$. We want $$\left|f(x)-f(y)\right|<\epsilon\implies \left|\sin x-\sin y\right|<\epsilon\implies \left|2\cos\frac{x+y}2\sin\frac{x-y}2\right|$$ Because $$\left|2\cos\frac{x+y}2\sin\frac{x-y}2\right|\le 2\left|\sin\frac{x-y}2\right|$$ it suffices $$2\left|\sin\frac{x-y}2\right|<\epsilon$$ when $$\left|x-y\right|<\delta\implies \left|\frac{x-y}2\right|<\delta$$ SInce $\left|\sin x\right|\le \left|x\right|$, $$2\left|\sin\frac{x-y}2\right|\le 2\left|\frac{x-y}2\right|<2\delta$$

Choosing $\delta=\frac{\epsilon}{2}>0$ will do the trick. Because $\delta$ doesn't depend on $x,y$, the continuity is uniform


By Mean Value Theorem,

$$ |\sin{x}- \sin{y}| \leq |x-y| |\cos{\xi}| \leq |x-y|, \quad x\leq\xi \leq y.$$

Hence, you may choose $\epsilon=\delta$.


Since $\sin x$ is a periodic continuous function with a period $2\pi$, it suffices to prove that it is uniformly continuous on $[0, 2\pi]$. Since $[0, 2\pi]$ is compact, this follows from the well-known theorem.