Pass parameters to std::thread wrapper

In the error message, you can see the difference void (*)() vs void (&)(). That's because std::thread's constructor parameters are std::decayed.

Add also std::ref to f:

template< class Function, class... Args>
   ManagedThread::ManagedThread( Function&& f, Args&&... args):
      mActive( false),
      mThread( threadFunction< Function, Args...>, std::ref(mActive), std::ref(f), std::forward<Args>(args)...)
{
}

The answer by @O'Neil is correct, but I would like to offer a simple lambda approach, since you've tagged this as C++14.

template<class Function, class... Args>
ManagedThread::ManagedThread(Function&& f, Args&&... args):
      mActive(false),
      mThread([&] /*()*/ { // uncomment if C++11 compatibility needed
        mActive = true;
        std::forward<Function>(f)(std::forward<Args>(args)...);
        mActive = false;
      })
{}

This would eliminate the need for an external function all together.


O'Neil and DeiDei got here first, and they're correct as far as I can tell. However, I'm still posting my solution to your problem.

Here's something that would work better:

#include <atomic>
#include <thread>
#include <utility>

class ManagedThread {

public: /* Methods: */

    template <class F, class ... Args>
    explicit ManagedThread(F && f, Args && ... args)
        : m_thread(
            [func=std::forward<F>(f), flag=&m_active](Args && ... args)
                    noexcept(noexcept(f(std::forward<Args>(args)...)))
            {
                func(std::forward<Args>(args)...);
                flag->store(false, std::memory_order_release);
            },
            std::forward<Args>(args)...)
    {}

    bool isActive() const noexcept
    { return m_active.load(std::memory_order_acquire); }

private: /* Fields: */

    std::atomic<bool> m_active{true};
    std::thread m_thread;

};

It makes use of lambdas instead, and correctly uses std::atomic<bool> instead of volatile to synchronize the state, and also includes the appropriate noexcept() specifiers.

Also note, that the underlying std::thread is not joined or detached properly before destruction, hence leading to std::terminate() being called.

I rewrote the test code as well:

#include <chrono>
#include <iostream>

int main() {
    ManagedThread mt1(
        []() noexcept
        { std::this_thread::sleep_for(std::chrono::milliseconds(500)); });
    std::cout << "thread 1 active = " << std::boolalpha << mt1.isActive()
              << std::endl;
    std::this_thread::sleep_for(std::chrono::seconds(1));
    std::cout << "thread 1 active = " << std::boolalpha << mt1.isActive()
              << std::endl;
}

Tags:

C++

C++14