One-to-one integer mapping function

If you want to ensure a 1:1 mapping then use an encryption (i.e. a permutation), not a hash. Encryption has to be 1:1 because it can be decrypted.

If you want 32 bit numbers then use Hasty Pudding Cypher or just write a simple four round Feistel cypher.

Here's one I prepared earlier:

import java.util.Random;

/**
 * IntegerPerm is a reversible keyed permutation of the integers.
 * This class is not cryptographically secure as the F function
 * is too simple and there are not enough rounds.
 *
 * @author Martin Ross
 */
public final class IntegerPerm {
    //////////////////
    // Private Data //
    //////////////////

    /** Non-zero default key, from www.random.org */
    private final static int DEFAULT_KEY = 0x6CFB18E2;

    private final static int LOW_16_MASK = 0xFFFF;
    private final static int HALF_SHIFT = 16;
    private final static int NUM_ROUNDS = 4;

    /** Permutation key */
    private int mKey;

    /** Round key schedule */
    private int[] mRoundKeys = new int[NUM_ROUNDS];

    //////////////////
    // Constructors //
    //////////////////

    public IntegerPerm() { this(DEFAULT_KEY); }

    public IntegerPerm(int key) { setKey(key); }

    ////////////////////
    // Public Methods //
    ////////////////////

    /** Sets a new value for the key and key schedule. */
    public void setKey(int newKey) {
        assert (NUM_ROUNDS == 4) : "NUM_ROUNDS is not 4";
        mKey = newKey;

        mRoundKeys[0] = mKey & LOW_16_MASK;
        mRoundKeys[1] = ~(mKey & LOW_16_MASK);
        mRoundKeys[2] = mKey >>> HALF_SHIFT;
        mRoundKeys[3] = ~(mKey >>> HALF_SHIFT);
    } // end setKey()

    /** Returns the current value of the key. */
    public int getKey() { return mKey; }

    /**
     * Calculates the enciphered (i.e. permuted) value of the given integer
     * under the current key.
     *
     * @param plain the integer to encipher.
     *
     * @return the enciphered (permuted) value.
     */
    public int encipher(int plain) {
        // 1 Split into two halves.
        int rhs = plain & LOW_16_MASK;
        int lhs = plain >>> HALF_SHIFT;

        // 2 Do NUM_ROUNDS simple Feistel rounds.
        for (int i = 0; i < NUM_ROUNDS; ++i) {
            if (i > 0) {
                // Swap lhs <-> rhs
                final int temp = lhs;
                lhs = rhs;
                rhs = temp;
            } // end if
            // Apply Feistel round function F().
            rhs ^= F(lhs, i);
        } // end for

        // 3 Recombine the two halves and return.
        return (lhs << HALF_SHIFT) + (rhs & LOW_16_MASK);
    } // end encipher()

    /**
     * Calculates the deciphered (i.e. inverse permuted) value of the given
     * integer under the current key.
     *
     * @param cypher the integer to decipher.
     *
     * @return the deciphered (inverse permuted) value.
     */
    public int decipher(int cypher) {
        // 1 Split into two halves.
        int rhs = cypher & LOW_16_MASK;
        int lhs = cypher >>> HALF_SHIFT;

        // 2 Do NUM_ROUNDS simple Feistel rounds.
        for (int i = 0; i < NUM_ROUNDS; ++i) {
            if (i > 0) {
                // Swap lhs <-> rhs
                final int temp = lhs;
                lhs = rhs;
                rhs = temp;
            } // end if
            // Apply Feistel round function F().
            rhs ^= F(lhs, NUM_ROUNDS - 1 - i);
        } // end for

        // 4 Recombine the two halves and return.
        return (lhs << HALF_SHIFT) + (rhs & LOW_16_MASK);
    } // end decipher()

    /////////////////////
    // Private Methods //
    /////////////////////

    // The F function for the Feistel rounds.
    private int F(int num, int round) {
        // XOR with round key.
        num ^= mRoundKeys[round];
        // Square, then XOR the high and low parts.
        num *= num;
        return (num >>> HALF_SHIFT) ^ (num & LOW_16_MASK);
    } // end F()

} // end class IntegerPerm

Do what Henrik said in his second suggestion. But since these values seem to be used by people (else you wouldn't want to randomize them). Take one additional step. Multiply the sequential number by a large prime and reduce mod N where N is a power of 2. But choose N to be 2 bits smaller than you can store. Next, multiply the result by 11 and use that. So we have:

Hash = ((count * large_prime) % 536870912) * 11

The multiplication by 11 protects against most data entry errors - if any digit is typed wrong, the result will not be a multiple of 11. If any 2 digits are transposed, the result will not be a multiple of 11. So as a preliminary check of any value entered, you check if it's divisible by 11 before even looking in the database.


You could simply XOR with 0xDEADBEEF, if that's good enough.

Alternatively multiply by an odd number mod 2^32. For the inverse mapping just multiply by the multiplicative inverse

Example: n = 2345678901; multiplicative inverse (mod 2^32): 2313902621 For the mapping just multiply by 2345678901 (mod 2^32):

1 --> 2345678901 2 --> 396390506

For the inverse mapping, multiply by 2313902621.