In Pytorch, how to add L1 regularizer to activations?

Here is how you do this:

  • In your Module's forward return final output and layers' output for which you want to apply L1 regularization
  • loss variable will be sum of cross entropy loss of output w.r.t. targets and L1 penalties.

Here's an example code

import torch
from torch.autograd import Variable
from torch.nn import functional as F


class MLP(torch.nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.linear1 = torch.nn.Linear(128, 32)
        self.linear2 = torch.nn.Linear(32, 16)
        self.linear3 = torch.nn.Linear(16, 2)

    def forward(self, x):
        layer1_out = F.relu(self.linear1(x))
        layer2_out = F.relu(self.linear2(layer1_out))
        out = self.linear3(layer2_out)
        return out, layer1_out, layer2_out

batchsize = 4
lambda1, lambda2 = 0.5, 0.01

model = MLP()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)

# usually following code is looped over all batches 
# but let's just do a dummy batch for brevity

inputs = Variable(torch.rand(batchsize, 128))
targets = Variable(torch.ones(batchsize).long())

optimizer.zero_grad()
outputs, layer1_out, layer2_out = model(inputs)
cross_entropy_loss = F.cross_entropy(outputs, targets)

all_linear1_params = torch.cat([x.view(-1) for x in model.linear1.parameters()])
all_linear2_params = torch.cat([x.view(-1) for x in model.linear2.parameters()])
l1_regularization = lambda1 * torch.norm(all_linear1_params, 1)
l2_regularization = lambda2 * torch.norm(all_linear2_params, 2)

loss = cross_entropy_loss + l1_regularization + l2_regularization
loss.backward()
optimizer.step()

@Sasank Chilamkurthy Regularization should be the weighting parameter of each layer of the model, not the output of each layer. please look below: Regularization

import torch
from torch.autograd import Variable
from torch.nn import functional as F


class MLP(torch.nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.linear1 = torch.nn.Linear(128, 32)
        self.linear2 = torch.nn.Linear(32, 16)
        self.linear3 = torch.nn.Linear(16, 2)
    def forward(self, x):
        layer1_out = F.relu(self.linear1(x))
        layer2_out = F.relu(self.linear2(layer1_out))
        out = self.linear3(layer2_out)
        return out

batchsize = 4
lambda1, lambda2 = 0.5, 0.01

model = MLP()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)

inputs = Variable(torch.rand(batchsize, 128))
targets = Variable(torch.ones(batchsize).long())
l1_regularization, l2_regularization = torch.tensor(0), torch.tensor(0)

optimizer.zero_grad()
outputs = model(inputs)
cross_entropy_loss = F.cross_entropy(outputs, targets)
for param in model.parameters():
    l1_regularization += torch.norm(param, 1)**2
    l2_regularization += torch.norm(param, 2)**2

loss = cross_entropy_loss + l1_regularization + l2_regularization
loss.backward()
optimizer.step()

All of the (other current) responses are incorrect in some way. This one is closest in that it suggests summing the norms of the outputs, which is correct, but the code sums the norms of the weights, which is incorrect.

The correct way is not to modify the network code, but rather to capture the outputs via a forward hook, as in the OutputHook class. From there, the summing of the norms of the outputs is straightforward, but one needs to take care to clear the captured outputs every iteration.

import torch


class OutputHook(list):
    """ Hook to capture module outputs.
    """
    def __call__(self, module, input, output):
        self.append(output)


class MLP(torch.nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.linear1 = torch.nn.Linear(128, 32)
        self.linear2 = torch.nn.Linear(32, 16)
        self.linear3 = torch.nn.Linear(16, 2)
        # Instantiate ReLU, so a hook can be registered to capture its output.
        self.relu = torch.nn.ReLU()

    def forward(self, x):
        layer1_out = self.relu(self.linear1(x))
        layer2_out = self.relu(self.linear2(layer1_out))
        out = self.linear3(layer2_out)
        return out


batch_size = 4
l1_lambda = 0.01

model = MLP()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
# Register hook to capture the ReLU outputs. Non-trivial networks will often
# require hooks to be applied more judiciously.
output_hook = OutputHook()
model.relu.register_forward_hook(output_hook)

inputs = torch.rand(batch_size, 128)
targets = torch.ones(batch_size).long()

optimizer.zero_grad()
outputs = model(inputs)
cross_entropy_loss = torch.nn.functional.cross_entropy(outputs, targets)

# Compute the L1 penalty over the ReLU outputs captured by the hook.
l1_penalty = 0.
for output in output_hook:
    l1_penalty += torch.norm(output, 1)
l1_penalty *= l1_lambda

loss = cross_entropy_loss + l1_penalty
loss.backward()
optimizer.step()
output_hook.clear()

Tags:

Python

Pytorch