In an equilateral triangle, prove that $|BQ| + |PQ| + |CP| > 2l$

Upon reflection ...

enter image description here

$$2s = |\overline{AB^\prime}| \leq |\overline{AP}|+|\overline{PQ^\prime}|+|\overline{Q^\prime B^\prime}| = p+q+r$$


Let $AQ=x$, $AP=y$ and $l=1$.

Thus, $$PQ=\sqrt{x^2-xy+y^2},$$ $$PC=\sqrt{y^2-y+1}$$ and $$BQ=\sqrt{x^2-x+1}$$ and we need to prove that $$\sqrt{x^2-xy+y^2}+\sqrt{x^2-x+1}+\sqrt{y^2-y+1}\geq2.$$ Now, by Minkowwski $$\sqrt{x^2-x+1}+\sqrt{y^2-y+1}=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}+\sqrt{\left(y-\frac{1}{2}\right)^2+\frac{3}{4}}\geq$$ $$\geq\sqrt{\left(x-\frac{1}{2}+y-\frac{1}{2}\right)^2+\left(\frac{\sqrt3}{2}+\frac{\sqrt3}{2}\right)^2}=\sqrt{(x+y-1)^2+3}$$ and $$\sqrt{x^2-xy+y^2}\geq\frac{x+y}{2}.$$ Let $x+y=2a$.

Hence, $a\leq1$ and we need to prove that $$a+\sqrt{(2a-1)^2+3}\geq2$$ or $$\sqrt{4a^2-4a+4}\geq2-a$$ or $$4a^2-4a+4\geq a^2-4a+4,$$ which is obvious.

Done!

By my solution easy to make a geometric proof.