How to prove $\frac{a}{7a+b}+\frac{b}{7b+c}+\frac{c}{7c+a}\le\frac38$

By C-S $$\sum_{cyc}\frac{a}{7a+b}=\frac{3}{7}+\sum_{cyc}\left(\frac{a}{7a+b}-\frac{1}{7}\right)=\frac{3}{7}-\frac{1}{7}\sum_{cyc}\frac{b}{7a+b}=$$ $$=\frac{3}{7}-\frac{1}{7}\sum_{cyc}\frac{b^2}{7ab+b^2}\leq\frac{3}{7}-\frac{1}{7}\cdot\frac{(a+b+c)^2}{\sum\limits_{cyc}(7ab+b^2)}.$$ Id est, it's enough to prove that $$\frac{3}{7}-\frac{1}{7}\cdot\frac{(a+b+c)^2}{\sum\limits_{cyc}(7ab+b^2)}\leq\frac{3}{8}$$ or $$8(a+b+c)^2\geq3\sum\limits_{cyc}(7ab+a^2)$$ or $$\sum_{cyc}(a-b)^2\geq0$$ and we are done!


By AM-GM we have $$a^2b+ac^2+b^2c\geq3abc$$ and $$a^2c+ab^2+bc^2\geq 3abc$$ so that $$35(a^2b+ac^2+b^2c)+13(a^2c+ab^2+bc^2)\geq 3(35+13)abc=144abc.$$

Now, note that $$\frac38-\sum_{\text{cyc}} \frac{a}{7a+b}=\frac{35(a^2b+ac^2+b^2c)+13(a^2c+ab^2+bc^2)-144abc}{8 (7 a+b) (a+7 c) (7 b+c)},$$

which is non-negative by the previous result.

We have equality if and only if we have equality in both AM-GMs which implies $a=b=c$.