How to calculate the Fourier transform of a Gaussian function?

First we consider the case $m=0$ and $n=1$, i.e. $f(x) := \exp(-x^2)$ and $$\hat{f}(k) := \int_{\mathbb{R}} f(x) \cdot e^{-\imath \, k x} \, dx = \int_{\mathbb{R}} \exp \left(-x^2 \right) \cdot e^{-\imath \, k \cdot x} \, dx.$$ Differentiating with respect to $k$ yields $$\frac{d}{dk} \hat{f}(k) = \int_{\mathbb{R}} e^{-x^2} \cdot (-\imath \, x) \cdot e^{-\imath \, k x} \, dx = \frac{1}{2} \imath \int_{\mathbb{R}} \left( \frac{d}{dx} e^{-x^2} \right) \cdot e^{-\imath \, k x} \, dx.$$

Applying the integration by parts formula, we obtain

$$\frac{d}{dk} \hat{f}(k) = - \frac{1}{2} k \cdot \int_{\mathbb{R}} e^{-x^2} \cdot e^{-\imath \, k \, x} \, dx =- \frac{1}{2} k \cdot \hat{f}(k).$$

The unique solution to this ordinary differential equation is given by

$$\hat{f}(k) =c \cdot \exp \left(- \frac{k^2}{4} \right).$$

Since $c=\hat{f}(0) = \int_{\mathbb{R}} f(x) \, dx$, it follows that $c = \sqrt{\pi}$. Moreover, applying the following well-known formulas

$$\begin{align} \widehat{f(x+m)}(k) &= e^{\imath \, k \cdot m} \hat{f}(k) \\ \widehat{f(\alpha \cdot x)}(k) &= \frac{1}{\alpha} \cdot \hat{f} \left( \frac{k}{\alpha} \right) \qquad \alpha>0, \end{align}$$

one can calculate the fourier transform of $f(x) = \exp \left(-n^2 \cdot (x-m)^2 \right)$ by some straight-forward computations.


$$ \begin{align} \int_{-\infty}^\infty e^{-x^2}\,e^{-ix\xi}\,\mathrm{d}x &=e^{-\xi^2/4}\int_{-\infty}^\infty e^{-(x+i\xi/2)^2}\,\mathrm{d}x\\ &=e^{-\xi^2/4}\int_{-\infty+i\xi/2}^{\infty+i\xi/2}e^{-x^2}\mathrm{d}x\\ &=e^{-\xi^2/4}\int_{-\infty}^\infty e^{-x^2}\mathrm{d}x\\ &=\sqrt{\pi}\,e^{-\xi^2/4}\tag{1} \end{align} $$ The third equation is justified by contour integration since $e^{-x^2}=O\left(e^{-\mathrm{Re}(x)^2}\right)$ as $|\mathrm{Re}(x)|\to\infty$ for bounded $|\mathrm{Im}(x)|$.

Now, simple manipulation of $(1)$ yields $$ \begin{align} \int_{-\infty}^\infty e^{-n^2(x-m)^2}\,e^{-ix\xi}\,\mathrm{d}x &=\int_{-\infty}^\infty e^{-n^2x^2}\,e^{-i(x+m)\xi}\,\mathrm{d}x\\ &=e^{-im\xi}\int_{-\infty}^\infty e^{-n^2x^2}\,e^{-ix\xi}\,\mathrm{d}x\\ &=\frac{e^{-im\xi}}{n}\int_{-\infty}^\infty e^{-x^2}\,e^{-ix\xi/n}\,\mathrm{d}x\\ &=\frac{e^{-im\xi}}{n}\sqrt{\pi}\,e^{-\xi^2/(4n^2)}\tag{2} \end{align} $$


While saz has already answered the question, I just wanted to add that this can be seen as one of the simplest examples of the Uncertainty Principle found in quantum mechanics, and generalizes to something called Hardy's uncertainty principle. In the QM context, momentum and position are each other's Fourier duals, and as you just discovered, a Gaussian function that's well-localized in one space cannot be well-localized in the other.