How do I use the new computeIfAbsent function?

Suppose you have the following code:

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

public class Test {
    public static void main(String[] s) {
        Map<String, Boolean> whoLetDogsOut = new ConcurrentHashMap<>();
        whoLetDogsOut.computeIfAbsent("snoop", k -> f(k));
        whoLetDogsOut.computeIfAbsent("snoop", k -> f(k));
    }
    static boolean f(String s) {
        System.out.println("creating a value for \""+s+'"');
        return s.isEmpty();
    }
}

Then you will see the message creating a value for "snoop" exactly once as on the second invocation of computeIfAbsent there is already a value for that key. The k in the lambda expression k -> f(k) is just a placeolder (parameter) for the key which the map will pass to your lambda for computing the value. So in the example the key is passed to the function invocation.

Alternatively you could write: whoLetDogsOut.computeIfAbsent("snoop", k -> k.isEmpty()); to achieve the same result without a helper method (but you won’t see the debugging output then). And even simpler, as it is a simple delegation to an existing method you could write: whoLetDogsOut.computeIfAbsent("snoop", String::isEmpty); This delegation does not need any parameters to be written.

To be closer to the example in your question, you could write it as whoLetDogsOut.computeIfAbsent("snoop", key -> tryToLetOut(key)); (it doesn’t matter whether you name the parameter k or key). Or write it as whoLetDogsOut.computeIfAbsent("snoop", MyClass::tryToLetOut); if tryToLetOut is static or whoLetDogsOut.computeIfAbsent("snoop", this::tryToLetOut); if tryToLetOut is an instance method.


Another example. When building a complex map of maps, the computeIfAbsent() method is a replacement for map's get() method. Through chaining of computeIfAbsent() calls together, missing containers are constructed on-the-fly by provided lambda expressions:

  // Stores regional movie ratings
  Map<String, Map<Integer, Set<String>>> regionalMovieRatings = new TreeMap<>();

  // This will throw NullPointerException!
  regionalMovieRatings.get("New York").get(5).add("Boyhood");

  // This will work
  regionalMovieRatings
    .computeIfAbsent("New York", region -> new TreeMap<>())
    .computeIfAbsent(5, rating -> new TreeSet<>())
    .add("Boyhood");

Recently I was playing with this method too. I wrote a memoized algorithm to calcualte Fibonacci numbers which could serve as another illustration on how to use the method.

We can start by defining a map and putting the values in it for the base cases, namely, fibonnaci(0) and fibonacci(1):

private static Map<Integer,Long> memo = new HashMap<>();
static {
   memo.put(0,0L); //fibonacci(0)
   memo.put(1,1L); //fibonacci(1)
}

And for the inductive step all we have to do is redefine our Fibonacci function as follows:

public static long fibonacci(int x) {
   return memo.computeIfAbsent(x, n -> fibonacci(n-2) + fibonacci(n-1));
}

As you can see, the method computeIfAbsent will use the provided lambda expression to calculate the Fibonacci number when the number is not present in the map. This represents a significant improvement over the traditional, tree recursive algorithm.