Gradient of l2 norm squared

Use the definition. If $$f(x)=\|x\|^2_2= \left(\left(\sum_{k=1}^n x_k^2 \right)^{1/2}\right)^{2}=\sum_{k=1}^n x_k^2 ,$$ then $$\frac{\partial}{\partial x_j}f(x) =\frac{\partial}{\partial x_j}\sum_{k=1}^n x_k^2=\sum_{k=1}^n \underbrace{\frac{\partial}{\partial x_j}x_k^2}_{\substack{=0, \ \text{ if } j \neq k,\\=2x_j, \ \text{ else }}}= 2x_j.$$ It follows that $$\nabla f(x) = 2x.$$


Another approach that extends to more general settings is to use the connection between the norm and the inner product, $$\|x\|^2 = (x,x).$$

We have the finite difference, \begin{align} \|x+sh\|^2 - \|x\|^2 &= (x+sh,x+sh) - (x,x) \\ &= (x,x) + 2s(x,h) + s^2(h,h) - (x,x) \\ &= 2s(x,h) + s^2(h,h). \end{align}

The gradient acting in the direction $h$ is the limit of this finite difference as the stepsize goes to zero, \begin{align} (\nabla\|x\|^2, h) &:= \lim_{s \rightarrow 0} \frac{1}{s}\left[\|x+sh\|^2 - \|x\|^2\right] \\ &= \lim_{s \rightarrow 0} \frac{1}{s}\left[2s(x,h) + s^2(h,h)\right] \\ &= (2x,h). \end{align} Since this holds for any direction $h$, the gradient must be $\nabla \|x\|^2 = 2x$.