GPG - verifying signatures without creating trust chain?

You must have the public key to verify a signature made with the corresponding private key, but you don't have to sign or even locally sign the key. In this case you will receive a warning from GPG that the key is untrusted.

Here's a test I made with a file signed by my own key, but on a system where the key had not been imported:

[ben@seditious tmp]$ gpg -v --verify thing.txt.gpg 
gpg: original file name='thing.txt'
gpg: Signature made Thu 26 Sep 2013 06:51:39 AM EST using RSA key ID 35C7553C
gpg: Can't check signature: public key not found
[ben@seditious tmp]$ gpg -v --status-fd 1 --verify thing.txt.gpg 
gpg: original file name='thing.txt'
gpg: Signature made Thu 26 Sep 2013 06:51:39 AM EST using RSA key ID 35C7553C
[GNUPG:] ERRSIG 7FF2D37135C7553C 1 10 00 1380142299 9
[GNUPG:] NO_PUBKEY 7FF2D37135C7553C
gpg: Can't check signature: public key not found
[ben@seditious tmp]$ 

Unfortunately Harry's suggestion doesn't work, it does extract a little more information, but not enough to be of use.

As you can see, the most information obtained is the key ID of the subkey used to make the signature and the time the signature was made. This matches the data available to pgpdump (or --list-packets):

bash-3.2$ pgpdump thing.txt.gpg 
Old: Compressed Data Packet(tag 8)
    Comp alg - ZLIB <RFC1950>(comp 2)
Old: One-Pass Signature Packet(tag 4)(13 bytes)
    New version(3)
    Sig type - Signature of a binary document(0x00).
    Hash alg - SHA512(hash 10)
    Pub alg - RSA Encrypt or Sign(pub 1)
    Key ID - 0x7FF2D37135C7553C
    Next packet - other than one pass signature
Old: Literal Data Packet(tag 11)(24 bytes)
    Format - binary
    Filename - thing.txt
    File modified time - Thu Sep 26 06:51:39 EST 2013
    Literal - ...
Old: Signature Packet(tag 2)(412 bytes)
    Ver 4 - new
    Sig type - Signature of a binary document(0x00).
    Pub alg - RSA Encrypt or Sign(pub 1)
    Hash alg - SHA512(hash 10)
    Hashed Sub: signature creation time(sub 2)(4 bytes)
        Time - Thu Sep 26 06:51:39 EST 2013
    Sub: issuer key ID(sub 16)(8 bytes)
        Key ID - 0x7FF2D37135C7553C
    Hash left 2 bytes - f0 97 
    RSA m^d mod n(3066 bits) - ...
        -> PKCS-1
bash-3.2$ 

As you can see it provides the hash algorithm, the details of the type of key (my signing key is a 3072-bit RSA subkey and the key ID of the subkey, but there is nothing to identify the master key. That information is only revealed when you have the public key and verify the signature.

Then I imported my public key on that system and tried again:

[ben@seditious tmp]$ gpg -v --verify thing.txt.gpg 
gpg: original file name='thing.txt'
gpg: Signature made Thu 26 Sep 2013 06:51:39 AM EST using RSA key ID 35C7553C
gpg: using subkey 35C7553C instead of primary key 73590E5D
gpg: using PGP trust model
gpg: Good signature from "Ben M <ben@REDACTED>"
gpg:                 aka "Ben M <ben.m@REDACTED>"
gpg:                 aka "Ben M <ben.m@REDACTED>"
gpg:                 aka "Ben M (backup email address) <benm@REDACTED>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg:          There is no indication that the signature belongs to the owner.
Primary key fingerprint: DB47 24E6 FA42 86C9 2B4E  55C4 321E 4E23 7359 0E5D
     Subkey fingerprint: B7F0 FE75 9387 430D D0C5  8BDB 7FF2 D371 35C7 553C
gpg: binary signature, digest algorithm SHA512
[ben@seditious tmp]$ 

Now it is able to identify the key and match it to the primary key. It is, however, possible to reduce the nature of those warnings like this:

[ben@seditious tmp]$ gpg -v --verify --trust-model always thing.txt.gpg 
gpg: original file name='thing.txt'
gpg: Signature made Thu 26 Sep 2013 06:51:39 AM EST using RSA key ID 35C7553C
gpg: using subkey 35C7553C instead of primary key 73590E5D
gpg: Good signature from "Ben M <ben@REDACTED>"
gpg:                 aka "Ben M <ben.m@REDACTED>"
gpg:                 aka "Ben M <ben.m@REDACTED>"
gpg:                 aka "Ben M (backup email address) <benm@REDACTED>"
gpg: WARNING: Using untrusted key!
gpg: binary signature, digest algorithm SHA512
[ben@seditious tmp]$ 

There's still a warning that it is an untrusted key, but not massively so and removing verbosity only reduces it to this:

[ben@seditious tmp]$ gpg --verify --trust-model always thing.txt.gpg 
gpg: Signature made Thu 26 Sep 2013 06:51:39 AM EST using RSA key ID 35C7553C
gpg: Good signature from "Ben M <ben@REDACTED>"
gpg:                 aka "Ben M <ben.m@REDACTED>"
gpg:                 aka "Ben M <ben.m@REDACTED>"
gpg:                 aka "Ben M (backup email address) <benm@REDACTED>"
gpg: WARNING: Using untrusted key!
[ben@seditious tmp]$ 

The public key is required for the verification stage because it is used to match data generated by the signer with their private key. It can be thought of, in simple terms, as the complement of encryption where the private key is needed to decypt data encrypted to the public key.

Note: I've tweaked the UIDs in this example a little bit, but everyone who gets that key will see what they really are. Otherwise the output is a straight copy and paste.

EDIT: You can call the public key file directly like a keyring if you have it in the non-ASCII armoured format (i.e. a .gpg file instead of a .asc file). Even so, you still need the public key. To do this the command is like this:

[ben@seditious ~]$ gpg -v --no-default-keyring --keyring /tmp/mykey.gpg --verify /tmp/thing.txt.gpg 
gpg: original file name='thing.txt'
gpg: Signature made Thu 26 Sep 2013 06:51:39 AM EST using RSA key ID 35C7553C
gpg: using subkey 35C7553C instead of primary key 73590E5D
gpg: using PGP trust model
gpg: Good signature from "Ben M <ben@REDACTED>"
gpg:                 aka "Ben M (backup email address) <benm@REDACTED>"
gpg:                 aka "Ben M <ben.m@REDACTED>"
gpg:                 aka "Ben M <ben.m@REDACTED>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg:          There is no indication that the signature belongs to the owner.
Primary key fingerprint: DB47 24E6 FA42 86C9 2B4E  55C4 321E 4E23 7359 0E5D
     Subkey fingerprint: B7F0 FE75 9387 430D D0C5  8BDB 7FF2 D371 35C7 553C
gpg: binary signature, digest algorithm SHA512
[ben@seditious ~]$ 

If you're OK with shipping a keyring, rather than a public key file, you probably want to use gpgv rather than gpg:

gpgv --keyring key.ring somefile.txt