Finding $\int x^xdx$

As noted in the comments, your derivation contains a mistake.

To answer the question, this function can not be integrated in terms of elementary functions. So there is no "simple" answer to your question, unless you are willing to consider a series approximation, obtained by expanding the exponential as a series:

$$\int{x^xdx} = \int{e^{\ln x^x}dx} = \int{\sum_{k=0}^{\infty}\frac{x^k\ln^k x}{k!}}dx$$


If you are willing to put bounds on your integral, it is possible to compute that $$\int_0^1 x^x\,dx = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^n}.$$ Indeed, if you start like nbubis suggests, and make the substitution $u = -\log x$, you get that $$\int_0^1 x^x\,dx = \sum_{k=0}^\infty \frac{1}{k!}\int_0^1x^k(\log x)^k\,dx = \sum_{k=0}^\infty \frac{(-1)^k}{k!}\int_0^\infty e^{u(k+1)}u^k\,du$$$$ = \sum_{k=0}^\infty \frac{(-1)^k}{k!}\frac{1}{(k+1)^k}\int_0^\infty e^{u(k+1)}[(k+1)u]^k\,du.$$ If you then make the substitution $t = (k+1)u$ this becomes $$\sum_{k=0}^\infty \frac{(-1)^k}{k!}\frac{1}{(k+1)^k}\int_0^\infty e^tt^k\,dt = \sum_{k=0}^\infty \frac{(-1)^k}{(k+1)!}\frac{1}{(k+1)^k}\Gamma(k+1),$$ where $\Gamma$ is the usual Gamma function. Since $\Gamma(k+1) = k!$, the final expression is $$ \sum_{k=0}^\infty \frac{(-1)^k}{(k+1)^{k+1}} = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^n}.$$ Similarly you can derive $\int_0^1 x^{-x}\,dx = \sum_{n=1}^\infty n^{-n}$. In don't think any further simplification is possible.


let ${x}^{x} = {\left({e}^{\ln {x}} \right)}^{x} = {e}^{x \ln {x}}. $

By the series expansion of ${e}^{x}$: $${e}^{x \ln {x}} = \sum _{ n=0 }^{ \infty }{ \frac { { \left( x \ln{x} \right) }^{ n } }{ n! } }$$

Thus $$\int _{ 0 }^{ 1 }{ { x }^{ x } } dx=\sum _{ n=0 }^{ \infty }{ \int _{ 0 }^{ 1 }{ \frac { { { x }^{ n }\left( \ln {x} \right) }^{ n } }{ n! } } }=\sum _{ n=0 }^{ \infty }{ \frac { 1 }{ n! } \int _{ 0 }^{ 1 }{ { x }^{ n } } { \left( \ln { x } \right) }^{ n }dx }$$

Let $u = {\left(\ln {x} \right)}^{n} $, $dv = {x}^{n} dx $, $du = \frac{{n \left(\ln {x} \right)}^{n-1}}{x} dx$ and $v=\frac{{x}^{n+1}}{n+1}$, then using integration by parts, we arrive at

$$\lim _{ a\rightarrow 0 }{ \int _{ a }^{ 1 }{ { x }^{ n } } { \left( \ln { x } \right) }^{ n }dx } =\lim _{ a\rightarrow 0 }{ { \left[ \frac { { x }^{ n+1 } }{ n+1 } { \left( \ln { x } \right) }^{ n } \right] }_{ a }^{ 1 } } -\lim _{ a\rightarrow 0 }{ \int _{ a }^{ 1 }{ { \frac { n }{ n+1 } x }^{ n } } { \left( \ln { x } \right) }^{ n-1 } } dx$$

which becomes $$\lim _{ a\rightarrow 0 }{ \int _{ a }^{ 1 }{ { x }^{ n } } { \left( \ln { x } \right) }^{ n }dx } =-\int _{ 0 }^{ 1 }{ { \frac { n }{ n+1 } x }^{ n } } { \left( \ln { x } \right) }^{ n-1 }dx = \frac{{(-1)}^{n}n!}{{(n+1)}^{n+1}}$$

Therefore $$\int _{ 0 }^{ 1 }{ { x }^{ x } } dx=\sum _{ n=1 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n-1 } }{ { n }^{ n } } }$$