Estimating $\int_{0}^{1}\sqrt {1 + \frac{1}{3x}} \ dx$.

$$\int_0^1\sqrt{1+\dfrac1{3x}}dx=2\int_0^1\sqrt{t^2+\dfrac13}dt$$ proves convergence.

Then

$$\frac1{\sqrt 3}\le\sqrt{t^2+\frac13}\le t+\frac1{\sqrt3}$$ implies

$$\frac2{\sqrt 3}\approx 1.155\le I\le1+\frac2{\sqrt 3}\approx2.155$$

A tighter upper bound is obtained by noting that the function is convex and

$$\sqrt{t^2+\frac13}\le \frac1{\sqrt3}+t\left(\sqrt{\frac 43}-\frac1{\sqrt3}\right),$$ giving $$I\le\sqrt3\approx1.732$$ A tighter lower bound could be found by considering the tangents at both endpoints up to their intersection, but we can already conclude C.

enter image description here

The exact value is $$1.5936865\cdots$$ The bounds can be computed by hand, by squaring to avoid square roots.


Starting from

$$\int_0^1\sqrt{1+{1\over3x}}\,dx=2\int_0^1\sqrt{t^2+{1\over3}}\,dt$$

(from the subsitution $x=t^2$) as in Yves Daoust's answer, integration by parts gives

$$\int_0^1\sqrt{t^2+{1\over3}}\,dt=t\sqrt{t^2+{1\over3}}\Big|_0^1-\int_0^1{t^2\over\sqrt{t^2+{1\over3}}}\,dt={2\over\sqrt3}-\int_0^1{t^2+{1\over3}-{1\over3}\over\sqrt{t^2+{1\over3}}}\,dt$$

hence

$$2\int_0^1\sqrt{t^2+{1\over3}}\,dt={2\over\sqrt3}+{1\over3}\int_0^1{dt\over\sqrt{t^2+{1\over3}}}={2\over\sqrt3}+{1\over\sqrt3}\int_0^1{dt\over\sqrt{3t^2+1}}$$

Since $1\le\sqrt{3t^2+1}\le2$ for $0\le t\le1$, we have

$${1\over2}\le\int_0^1{dt\over\sqrt{3t^2+1}}\le1$$

Thus

$${2\over\sqrt3}+{1\over2\sqrt3}\le2\int_0^1\sqrt{t^2+{1\over3}}\,dt\le{2\over\sqrt3}+{1\over\sqrt3}$$

Now

$${2\over\sqrt3}+{1\over2\sqrt3}={5\sqrt3\over6}=\sqrt{75\over36}\gt\sqrt2\gt1.4$$

and

$${2\over\sqrt3}+{1\over\sqrt3}=\sqrt3\lt\sqrt{3.24}=1.8$$

Consquently

$$1.4\lt\int_0^1\sqrt{1+{1\over3x}}\,dx\lt1.8$$

and thus (C) is the correct answer.