Direct formula for area of a triangle formed by three lines, given their equations in the cartesian plane.

Clearly, we can scale the coefficients of a given linear equation by any (non-zero) constant and the result is unchanged. Therefore, by dividing-through by $\sqrt{a_i^2+b_i^2}$, we may assume our equations are in "normal form":

$$\begin{align} x \cos\theta + y \sin\theta - p &= 0 \\ x \cos\phi + y \sin\phi - q &= 0 \\ x \cos\psi + y \sin\psi - r &= 0 \end{align}$$

with $\theta$, $\phi$, $\psi$ and $p$, $q$, $r$ (and $A$, $B$, $C$ and $a$, $b$, $c$) as in the figure:

enter image description here

Then

$$C_1 = \left|\begin{array}{cc} \cos\phi & \sin\phi \\ \cos\psi & \sin\psi \end{array} \right| = \sin\psi\cos\phi - \cos\psi\sin\phi = \sin(\psi-\phi) = \sin \angle ROQ = \sin A$$ Likewise, $$C_2 = \sin B \qquad C_3 = \sin C$$

Moreover, $$D := \left|\begin{array}{ccc} \cos\theta & \sin\theta & - p \\ \cos\phi & \sin\phi & - q \\ \cos\psi & \sin\psi & - r \end{array}\right| = - \left( p C_1 + q C_2 + r C_3 \right) = - \left(\;p \sin A + q \sin B + r \sin C\;\right)$$

Writing $d$ for the circumdiameter of the triangle, the Law of Sines tells us that $$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = d$$

Therefore,

$$\begin{align} D &= - \left( \frac{ap}{d} + \frac{bq}{d} + \frac{cr}{d} \right) \\[4pt] &= -\frac{1}{d}\left(\;ap + b q + c r\;\right) \\[4pt] &= -\frac{1}{d}\left(\;2|\triangle COB| + 2|\triangle AOC| + 2|\triangle BOA| \;\right) \\[4pt] &= -\frac{2\;|\triangle ABC|}{d} \end{align}$$

Also, $$C_1 C_2 C_3 = \sin A \sin B \sin C = \frac{a}{d}\frac{b}{d}\sin C= \frac{2\;|\triangle ABC|}{d^2}$$

Finally: $$\frac{D^2}{2C_1C_2C_3} = \frac{4\;|\triangle ABC|^2/d^2}{4\;|\triangle ABC|/d^2} = |\triangle ABC|$$


Let $(x_1,y_1),(x_2,y_2),(x_3,y_3)$ be the vertices of the triangle. Then the three non-concurrent, non parallel lines can be represented by: $$(y_2-y_1)(x-x_1)-(x_2-x_1)(y-y_1)=0$$ $$(y_3-y_2)(x-x_2)-(x_3-x_2)(y-y_2)=0$$ $$(y_1-y_3)(x-x_3)-(x_1-x_3)(y-y_3)=0$$ The coefficients in the OP's question are thus represented by: $$ a_1 = (y_2-y_1) \quad ; \quad b_1 = -(x_2-x_1) \quad ; \quad c_1 = -(y_2-y_1)x_1+(x_2-x_1)y_1 \\ a_2 = (y_3-y_2) \quad ; \quad b_2 = -(x_3-x_2) \quad ; \quad c_2 = -(y_3-y_2)x_2+(x_3-x_2)y_2 \\ a_3 = (y_1-y_3) \quad ; \quad b_3 = -(x_1-x_3) \quad ; \quad c_3 = -(y_1-y_3)x_3+(x_1-x_3)y_3 $$ Now straightforward calculation should reveal that: $$ \frac{det\begin{bmatrix}a_1 & b_1 & c_1\\a_2 & b_2 & c_2\\a_3 & b_3 & c_3\end{bmatrix}^2}{2C_1C_2C_3} =\frac{1}{2} det\begin{bmatrix}(x_2-x_1) & (y_2-y_1)\\(x_3-x_1) & (y_3-y_1)\end{bmatrix} $$ Where the latter (half) determinant certainly represents the area of the triangle:
enter image description here
The algebra is somewhat tedious. Therefore I've invoked MAPLE to save time and effort:

A := array([[a1,b1,c1],[a2,b2,c2],[a3,b3,c3]]);
C1 := det(array([[a2,b2],[a3,b3]]));
C2 := -det(array([[a1,b1],[a3,b3]]));
C3 := det(array([[a1,b1],[a2,b2]]));
B := array([[x2-x1,y2-y1],[x3-x1,y3-y1]]);
verify(det(A)^2/(2*C1*C2*C3),det(B)/2,equal);
                        true
This completes the proof.