# Deriving an equation involving Killing vectors

Start with the following form of the Bianchi Identities $$\nabla^\mu R_{\mu\nu} = \frac{1}{2} \nabla_\nu R$$ Contract both sides with $K^\nu$. We find $$\frac{1}{2} K^\nu \nabla_\nu R = K^\nu \nabla^\mu R_{\mu\nu} = \nabla^\mu \left( K^\nu R_{\mu\nu} \right) - R_{\mu\nu} \nabla^\mu K^\nu$$ The second term vanishes due to symmetry of $R_{\mu\nu}$. Now, recall that $R_{\mu\nu}K^\nu = \nabla_\nu \nabla_\mu K^\nu$. We now use the following fact $$\left[ \nabla_\rho, \nabla_\sigma \right] \tau^{\mu\nu} = R^\mu{}_{\lambda\rho\sigma} \tau^{\lambda\nu} + R^\nu{}_{\lambda\rho\sigma}\tau^{\mu\lambda}$$ This implies $$\begin{split} \nabla^\mu \left( K^\nu R_{\mu\nu} \right) &= \nabla_\mu\nabla_\nu \nabla^\mu K^\nu = \nabla_{[\mu}\nabla_{\nu ]} \nabla^{[\mu} K^{\nu]} = \frac{1}{2}[\nabla_{\mu}, \nabla_{\nu }] \nabla^{[\mu} K^{\nu]} \\ &=\frac{1}{2}\left(R^\mu_{\;\;\lambda\mu\nu} \nabla^{[\lambda} K^{\nu]}-R^\nu_{\;\;\lambda\nu\mu} \nabla^{[\mu} K^{\lambda]}\right)\\ &=\frac{1}{2}\left(R_{[\lambda\nu ]}\nabla^{[\lambda} K^{\nu]}-R_{[\lambda\mu ]}\nabla^{[\mu} K^{\lambda]}\right) = 0 \end{split}$$ which then implies $$K^\nu \nabla_\nu R = 0$$