Computing $\lim_{x\to\infty}{3^x\over \sqrt {9^x - 4^x}}$

HINT. Yes, note that: $${\sqrt{3^{2x}\over (3^{2x} - 2^{2x})}}={\sqrt{3^{2x}\over 3^{2x}\left(1 - \left(\frac{2}{3}\right)^{2x}\right)}}$$ but $\left(\frac{2}{3}\right)^{2x}\rightarrow 0$.


For his problem exist simple solution.

$$ \lim_{x \to \infty^{+}} \frac{3^x}{\sqrt{9^x - 4^x}} = \lim_{x \to \infty^{+}} \frac{3^x}{\sqrt{(3^2)^x( 1 - \frac{4^x}{9^x})}} = \lim_{x \to \infty^{+}} \frac{3^x}{\sqrt{(3^x)^2} \cdot \sqrt{1 - \frac{4^x}{9^x}}} = \\ = \lim_{x \to \infty^{+}} \frac{3^x}{3^x \cdot \sqrt{1 - \left(\frac{4}{9}\right)^x}} = \lim_{x \to \infty^{+}} \frac{1}{\sqrt{1 - \left(\frac{4}{9}\right)^x}} = 1$$

I used here fact, that $|q| < 1 \Rightarrow \lim_{x \to \infty}q^x=0$. In fact it's same to yours, but I excluded $3^x$ from root, you just included.