Can/Should I run this code of a statistical application on a GPU?

UPDATE GPU Version

__global__ void hash (float *largeFloatingPointArray,int largeFloatingPointArraySize, int *dictionary, int size, int num_blocks)
{
    int x = (threadIdx.x + blockIdx.x * blockDim.x); // Each thread of each block will
    float y;                                         // compute one (or more) floats
    int noOfOccurrences = 0;
    int a;
    
    while( x < size )            // While there is work to do each thread will:
    {
        dictionary[x] = 0;       // Initialize the position in each it will work
        noOfOccurrences = 0;    

        for(int j = 0 ;j < largeFloatingPointArraySize; j ++) // Search for floats
        {                                                     // that are equal 
                                                             // to it assign float
           y = largeFloatingPointArray[j];  // Take a candidate from the floats array 
           y *= 10000;                      // e.g if y = 0.0001f;
           a = y + 0.5;                     // a = 1 + 0.5 = 1;
           if (a == x) noOfOccurrences++;    
        }                                      
                                                    
        dictionary[x] += noOfOccurrences; // Update in the dictionary 
                                          // the number of times that the float appears 

    x += blockDim.x * gridDim.x;  // Update the position here the thread will work
    }
}

This one I just tested for smaller inputs, because I am testing in my laptop. Nevertheless, it is working, but more tests are needed.

UPDATE Sequential Version

I just did this naive version that executes your algorithm for an array with 30,000,000 element in less than 20 seconds (including the time taken by function that generates the data).

This naive version first sorts your array of floats. Afterward, will go through the sorted array and check the number of times a given value appears in the array and then puts this value in a dictionary along with the number of times it has appeared.

You can use sorted map, instead of the unordered_map that I used.

Heres the code:

#include <stdio.h>
#include <stdlib.h>
#include "cuda.h"
#include <algorithm>
#include <string>
#include <iostream>
#include <tr1/unordered_map>


typedef std::tr1::unordered_map<float, int> Mymap;


void generator(float *data, long int size)
{
    float LO = 0.0;
    float HI = 100.0;
    
    for(long int i = 0; i < size; i++)
        data[i] = LO + (float)rand()/((float)RAND_MAX/(HI-LO));
}

void print_array(float *data, long int size)
{

    for(long int i = 2; i < size; i++)
        printf("%f\n",data[i]);
    
}

std::tr1::unordered_map<float, int> fill_dict(float *data, int size)
{
    float previous = data[0];
    int count = 1;
    std::tr1::unordered_map<float, int> dict;
    
    for(long int i = 1; i < size; i++)
    {
        if(previous == data[i])
            count++;
        else
        {
          dict.insert(Mymap::value_type(previous,count));
          previous = data[i];
          count = 1;         
        }
        
    }
    dict.insert(Mymap::value_type(previous,count)); // add the last member
    return dict;
    
}

void printMAP(std::tr1::unordered_map<float, int> dict)
{
   for(std::tr1::unordered_map<float, int>::iterator i = dict.begin(); i != dict.end(); i++)
  {
     std::cout << "key(string): " << i->first << ", value(int): " << i->second << std::endl;
   }
}


int main(int argc, char** argv)
{
  int size = 1000000; 
  if(argc > 1) size = atoi(argv[1]);
  printf("Size = %d",size);
  
  float data[size];
  using namespace __gnu_cxx;
  
  std::tr1::unordered_map<float, int> dict;
  
  generator(data,size);
  
  sort(data, data + size);
  dict = fill_dict(data,size);
  
  return 0;
}

If you have the library thrust installed in you machine your should use this:

#include <thrust/sort.h>
thrust::sort(data, data + size);

instead of this

sort(data, data + size);

For sure it will be faster.

Original Post

I'm working on a statistical application which has a large array containing 10 - 30 millions of floating point values.

Is it possible (and does it make sense) to utilize a GPU to speed up such calculations?

Yes, it is. A month ago, I ran an entirely Molecular Dynamic simulation on a GPU. One of the kernels, which calculated the force between pairs of particles, received as parameter 6 array each one with 500,000 doubles, for a total of 3 Millions doubles (22 MB).

So if you are planning to put 30 Million floating points, which is about 114 MB of global Memory, it will not be a problem.

In your case, can the number of calculations be an issue? Based on my experience with the Molecular Dynamic (MD), I would say no. The sequential MD version takes about 25 hours to complete while the GPU version took 45 Minutes. You said your application took a couple hours, also based in your code example it looks softer than the MD.

Here's the force calculation example:

__global__ void add(double *fx, double *fy, double *fz,
                    double *x, double *y, double *z,...){
   
     int pos = (threadIdx.x + blockIdx.x * blockDim.x); 
      
     ...
     
     while(pos < particles)
     {
     
      for (i = 0; i < particles; i++)
      {
              if(//inside of the same radius)
                {
                 // calculate force
                } 
       }
     pos += blockDim.x * gridDim.x;  
     }        
  }

A simple example of a code in CUDA could be the sum of two 2D arrays:

In C:

for(int i = 0; i < N; i++)
    c[i] = a[i] + b[i]; 

In CUDA:

__global__ add(int *c, int *a, int*b, int N)
{
  int pos = (threadIdx.x + blockIdx.x)
  for(; i < N; pos +=blockDim.x)
      c[pos] = a[pos] + b[pos];
}

In CUDA you basically took each for iteration and assigned to each thread,

1) threadIdx.x + blockIdx.x*blockDim.x;

Each block has an ID from 0 to N-1 (N the number maximum of blocks) and each block has a 'X' number of threads with an ID from 0 to X-1.

  1. Gives you the for loop iteration that each thread will compute based on its ID and the block ID which the thread is in; the blockDim.x is the number of threads that a block has.

So if you have 2 blocks each one with 10 threads and N=40, the:

Thread 0 Block 0 will execute pos 0
Thread 1 Block 0 will execute pos 1
...
Thread 9 Block 0 will execute pos 9
Thread 0 Block 1 will execute pos 10
....
Thread 9 Block 1 will execute pos 19
Thread 0 Block 0 will execute pos 20
...
Thread 0 Block 1 will execute pos 30
Thread 9 Block 1 will execute pos 39

Looking at your current code, I have made this draft of what your code could look like in CUDA:

__global__ hash (float *largeFloatingPointArray, int *dictionary)
    // You can turn the dictionary in one array of int
    // here each position will represent the float
    // Since  x = 0f; x < 100f; x += 0.0001f
    // you can associate each x to different position
    // in the dictionary:

    // pos 0 have the same meaning as 0f;
    // pos 1 means float 0.0001f
    // pos 2 means float 0.0002f ect.
    // Then you use the int of each position 
    // to count how many times that "float" had appeared 


   int x = blockIdx.x;  // Each block will take a different x to work
    float y;
    
while( x < 1000000) // x < 100f (for incremental step of 0.0001f)
{
    int noOfOccurrences = 0;
    float z = converting_int_to_float(x); // This function will convert the x to the
                                          // float like you use (x / 0.0001)

    // each thread of each block
    // will takes the y from the array of largeFloatingPointArray
    
    for(j = threadIdx.x; j < largeFloatingPointArraySize; j += blockDim.x)
    {
        y = largeFloatingPointArray[j];
        if (z == y)
        {
            noOfOccurrences++;
        }
    }
    if(threadIdx.x == 0) // Thread master will update the values
      atomicAdd(&dictionary[x], noOfOccurrences);
    __syncthreads();
}

You have to use atomicAdd because different threads from different blocks may write/read noOfOccurrences concurrently, so you have to ensure mutual exclusion.

This is just one approach; you can even assign the iterations of the outer loop to the threads instead of the blocks.

Tutorials

The Dr Dobbs Journal series CUDA: Supercomputing for the masses by Rob Farmer is excellent and covers just about everything in its fourteen installments. It also starts rather gently and is therefore fairly beginner-friendly.

and anothers:

  • Volume I: Introduction to CUDA Programming
  • Getting started with CUDA
  • CUDA Resources List

Take a look on the last item, you will find many link to learn CUDA.

OpenCL: OpenCL Tutorials | MacResearch


Is it possible (and does it make sense) to utilize a GPU to speed up such calculations?

  • Definitely YES, this kind of algorithm is typically the ideal candidate for massive data-parallelism processing, the thing GPUs are so good at.

If yes: Does anyone know any tutorial or got any sample code (programming language doesn't matter)?

  • When you want to go the GPGPU way you have two alternatives : CUDA or OpenCL.

    CUDA is mature with a lot of tools but is NVidia GPUs centric.

    OpenCL is a standard running on NVidia and AMD GPUs, and CPUs too. So you should really favour it.

  • For tutorial you have an excellent series on CodeProject by Rob Farber : http://www.codeproject.com/Articles/Rob-Farber#Articles

  • For your specific use-case there is a lot of samples for histograms buiding with OpenCL (note that many are image histograms but the principles are the same).

  • As you use C# you can use bindings like OpenCL.Net or Cloo.

  • If your array is too big to be stored in the GPU memory, you can block-partition it and rerun your OpenCL kernel for each part easily.


In addition to the suggestion by the above poster use the TPL (task parallel library) when appropriate to run in parallel on multiple cores.

The example above could use Parallel.Foreach and ConcurrentDictionary, but a more complex map-reduce setup where the array is split into chunks each generating an dictionary which would then be reduced to a single dictionary would give you better results.

I don't know whether all your computations map correctly to the GPU capabilities, but you'll have to use a map-reduce algorithm anyway to map the calculations to the GPU cores and then reduce the partial results to a single result, so you might as well do that on the CPU before moving on to a less familiar platform.


I don't know much of anything about parallel processing or GPGPU, but for this specific example, you could save a lot of time by making a single pass over the input array rather than looping over it a million times. With large data sets you will usually want to do things in a single pass if possible. Even if you're doing multiple independent computations, if it's over the same data set you might get better speed doing them all in the same pass, as you'll get better locality of reference that way. But it may not be worth it for the increased complexity in your code.

In addition, you really don't want to add a small amount to a floating point number repetitively like that, the rounding error will add up and you won't get what you intended. I've added an if statement to my below sample to check if inputs match your pattern of iteration, but omit it if you don't actually need that.

I don't know any C#, but a single pass implementation of your sample would look something like this:

Dictionary<float, int> noOfNumbers = new Dictionary<float, int>();

foreach (float x in largeFloatingPointArray)
{
    if (math.Truncate(x/0.0001f)*0.0001f == x)
    {
        if (noOfNumbers.ContainsKey(x))
            noOfNumbers.Add(x, noOfNumbers[x]+1);
        else
            noOfNumbers.Add(x, 1);
    }
}

Hope this helps.