Can I use a binary literal in C or C++?

You can use BOOST_BINARY while waiting for C++0x. :) BOOST_BINARY arguably has an advantage over template implementation insofar as it can be used in C programs as well (it is 100% preprocessor-driven.)

To do the converse (i.e. print out a number in binary form), you can use the non-portable itoa function, or implement your own.

Unfortunately you cannot do base 2 formatting with STL streams (since setbase will only honour bases 8, 10 and 16), but you can use either a std::string version of itoa, or (the more concise, yet marginally less efficient) std::bitset.

#include <boost/utility/binary.hpp>
#include <stdio.h>
#include <stdlib.h>
#include <bitset>
#include <iostream>
#include <iomanip>

using namespace std;

int main() {
  unsigned short b = BOOST_BINARY( 10010 );
  char buf[sizeof(b)*8+1];
  printf("hex: %04x, dec: %u, oct: %06o, bin: %16s\n", b, b, b, itoa(b, buf, 2));
  cout << setfill('0') <<
    "hex: " << hex << setw(4) << b << ", " <<
    "dec: " << dec << b << ", " <<
    "oct: " << oct << setw(6) << b << ", " <<
    "bin: " << bitset< 16 >(b) << endl;
  return 0;
}

produces:

hex: 0012, dec: 18, oct: 000022, bin:            10010
hex: 0012, dec: 18, oct: 000022, bin: 0000000000010010

Also read Herb Sutter's The String Formatters of Manor Farm for an interesting discussion.


If you are using GCC then you can use a GCC extension (which is included in the C++14 standard) for this:

int x = 0b00010000;

You can use binary literals. They are standardized in C++14. For example,

int x = 0b11000;

Support in GCC

Support in GCC began in GCC 4.3 (see https://gcc.gnu.org/gcc-4.3/changes.html) as extensions to the C language family (see https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html#C-Extensions), but since GCC 4.9 it is now recognized as either a C++14 feature or an extension (see Difference between GCC binary literals and C++14 ones?)

Support in Visual Studio

Support in Visual Studio started in Visual Studio 2015 Preview (see https://www.visualstudio.com/news/vs2015-preview-vs#C++).


template<unsigned long N>
struct bin {
    enum { value = (N%10)+2*bin<N/10>::value };
} ;

template<>
struct bin<0> {
    enum { value = 0 };
} ;

// ...
    std::cout << bin<1000>::value << '\n';

The leftmost digit of the literal still has to be 1, but nonetheless.

Tags:

C++

C

Binary